MTH 201: Multivariable Calculus and Differential Equations

Homework III

(Due 16/09)

1. The introduction of polar coordinates changes $f(x, y)$ into $\phi(r, \theta)$, where $x=r \cos \theta$ and $y=r \sin \theta$. Express the second-order partial derivatives $\frac{\partial^{2} \phi}{\partial r^{2}}, \frac{\partial^{2} \phi}{\partial r \partial \theta}, \frac{\partial^{2} \phi}{\partial \theta \partial r}$, and $\frac{\partial^{2} \phi}{\partial \theta^{2}}$, in terms of partial derivatives of f.
2. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ and $g: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be two vector fields defined as follows:

$$
\begin{gathered}
f(x, y, z)=\left(x^{2}+y+z\right) i+\left(2 x+y+z^{2}\right) j, \\
g(u, v, w)=u v^{2} w^{2} i+w^{2} \sin v j+u^{2} e^{v} k .
\end{gathered}
$$

(a) Compute each of the Jacobian matrices $D f(x, y, z)$ and $D g(u, v, w)$.
(b) Compute the composition $h(u, v, w)=f(g(u, v, w))$.
(c) Compute the Jacobian matrix $\operatorname{Dh}(u, 0, w)$.
3. Find all differential vector fields $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ that satisfy the following conditions.
(a) The Jacobian matrix $D f(x, y, z)$ is the identity matrix of order 3 .
(b) The Jacobian matrix $D f(x, y, z)$ is a diagonal matrix of the form $\operatorname{diag}(p(x), q(y), r(z))$, where p, q, and r are given continuous functions.
4. The equations $u=f(x, y, z), x=X(r, s, t), y=Y(r, s, t)$, and $z=Z(r, s, t)$ define u as a function of r, s, and t, say $u=F(r, s, t)$.
(a) Use chain rule to express $\frac{\partial F}{\partial r}, \frac{\partial F}{\partial s}$, and $\frac{\partial F}{\partial t}$ in terms of the partial derivatives of f, X, Y, and Z.
(b) Solve (a) for: $X(r, s, t)=r+s+t, Y(r, s, t)=r-2 s+3 t, Z(r, s, t)=2 r+s-t$.
(c) Solve (a) for: $X(r, s, t)=r^{2}+s^{2}+t^{2}, Y(r, s, t)=r^{2}-s^{2}-t^{2}, Z(r, s, t)=r^{2}-s^{2}+t^{2}$.
5. The change of variables $x=u v, y=\frac{1}{2}\left(u^{2}-v^{2}\right)$ transforms $f(x, y)$ to $g(u, v)$.
(a) Assuming the equality of mixed partials, compute $\frac{\partial g}{\partial u}, \frac{\partial g}{\partial v}, \frac{\partial^{2} g}{\partial u \partial v}$ in terms of the partial derivatives of f.
(b) If $\|\nabla f(x, y)\|^{2}=2$ for all x and y, determine constants a and b such that

$$
a\left(\frac{\partial g}{\partial u}\right)^{2}-b\left(\frac{\partial g}{\partial v}\right)^{2}=u^{2}+v^{2}
$$

6. Define $f(x, y)=\int_{0}^{\sqrt{x y}} e^{-t^{2}} d t$ for $x>0$ and $y>0$. Compute $\frac{\partial f}{\partial x}$ in terms of x and y.
7. Let the scalar field f be defined by

$$
f(x, y)= \begin{cases}\frac{x y^{3}}{x^{3}+y^{6}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

(a) Prove that $f^{\prime}(0 ; a)$ exists for every vector a and compute its value in terms of the components of a.
(b) Determine whether or not f is continuous at origin.
8. Let $v=x i+y j+z k$ and $r=\|v\|$. If A and B are constant vectors, show that:
(a) $A \cdot \nabla\left(\frac{1}{r}\right)=-\frac{A \cdot v}{r^{3}}$.
9. Find the equation of tangent plane to the following surfaces at $\left(x_{0}, y_{0}, z_{0}\right)$.
(a) The paraboloid $\frac{z}{c}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$.
(b) The ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$
10. Find the set of points at which the tangent planes to the two spheres $(x-a)^{2}+(y-b)^{2}+$ $(z-c)^{2}=1$ and $x^{2}+y^{2}+z^{2}=1$ intersect orthogonally.

