MTH 201: Multivariable Calculus and Differential Equations

Homework III

 $(Due \ 16/09)$

- 1. The introduction of polar coordinates changes f(x, y) into $\phi(r, \theta)$, where $x = r \cos \theta$ and $y = r \sin \theta$. Express the second-order partial derivatives $\frac{\partial^2 \phi}{\partial r^2}$, $\frac{\partial^2 \phi}{\partial r \partial \theta}$, $\frac{\partial^2 \phi}{\partial \theta \partial r}$, and $\frac{\partial^2 \phi}{\partial \theta^2}$, in terms of partial derivatives of f.
- 2. Let $f : \mathbb{R}^3 \to \mathbb{R}^2$ and $g : \mathbb{R}^3 \to \mathbb{R}^3$ be two vector fields defined as follows:

$$f(x, y, z) = (x^2 + y + z)i + (2x + y + z^2)j,$$

$$g(u, v, w) = uv^2w^2i + w^2\sin vj + u^2e^vk.$$

- (a) Compute each of the Jacobian matrices Df(x, y, z) and Dg(u, v, w).
- (b) Compute the composition h(u, v, w) = f(g(u, v, w)).
- (c) Compute the Jacobian matrix Dh(u, 0, w).
- 3. Find all differential vector fields $f : \mathbb{R}^3 \to \mathbb{R}^3$ that satisfy the following conditions.
 - (a) The Jacobian matrix Df(x, y, z) is the identity matrix of order 3.
 - (b) The Jacobian matrix Df(x, y, z) is a diagonal matrix of the form diag(p(x), q(y), r(z)), where p, q, and r are given continuous functions.
- 4. The equations u = f(x, y, z), x = X(r, s, t), y = Y(r, s, t), and z = Z(r, s, t) define u as a function of r, s, and t, say u = F(r, s, t).
 - (a) Use chain rule to express $\frac{\partial F}{\partial r}$, $\frac{\partial F}{\partial s}$, and $\frac{\partial F}{\partial t}$ in terms of the partial derivatives of f, X, Y, and Z.
 - (b) Solve (a) for: X(r, s, t) = r + s + t, Y(r, s, t) = r 2s + 3t, Z(r, s, t) = 2r + s t.
 - (c) Solve (a) for: $X(r, s, t) = r^2 + s^2 + t^2$, $Y(r, s, t) = r^2 s^2 t^2$, $Z(r, s, t) = r^2 s^2 + t^2$.
- 5. The change of variables $x = uv, y = \frac{1}{2}(u^2 v^2)$ transforms f(x, y) to g(u, v).
 - (a) Assuming the equality of mixed partials, compute $\frac{\partial g}{\partial u}$, $\frac{\partial g}{\partial v}$, $\frac{\partial^2 g}{\partial u \partial v}$ in terms of the partial derivatives of f.
 - (b) If $\|\nabla f(x,y)\|^2 = 2$ for all x and y, determine constants a and b such that

$$a\left(\frac{\partial g}{\partial u}\right)^2 - b\left(\frac{\partial g}{\partial v}\right)^2 = u^2 + v^2.$$

6. Define $f(x,y) = \int_0^{\sqrt{xy}} e^{-t^2} dt$ for x > 0 and y > 0. Compute $\frac{\partial f}{\partial x}$ in terms of x and y.

7. Let the scalar field f be defined by

$$f(x,y) = \begin{cases} \frac{xy^3}{x^3 + y^6} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0), \end{cases}$$

(a) Prove that f'(0; a) exists for every vector a and compute its value in terms of the components of a.

- (b) Determine whether or not f is continuous at origin.
- 8. Let v = xi + yj + zk and r = ||v||. If A and B are constant vectors, show that:

(a)
$$A \cdot \nabla \left(\frac{1}{r}\right) = -\frac{A \cdot v}{r^3}.$$

- 9. Find the equation of tangent plane to the following surfaces at (x_0, y_0, z_0) .
 - (a) The paraboloid $\frac{z}{c} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$.
 - (b) The ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$
- 10. Find the set of points at which the tangent planes to the two spheres $(x a)^2 + (y b)^2 + (z c)^2 = 1$ and $x^2 + y^2 + z^2 = 1$ intersect orthogonally.